In September 1959, physicists Giuseppe Cocconi and Philip Morrison published an article in the journal Nature with the provocative title "Searching for Interstellar Communications."[5][6] Cocconi and Morrison argued that radio telescopes had become sensitive enough to pick up transmissions that might be broadcast into space by civilizations orbiting other stars. Such messages, they suggested, might be transmitted at a wavelength of 21 cm (1,420.4 MHz). This is the wavelength of radio emission by neutral hydrogen, the most common element in the universe, and they reasoned that other intelligences might see this as a logical landmark in the radio spectrum.
Two months later, Harvard University astronomy professor Harlow Shapley speculated on the number of inhabited planets in the universe, saying "The universe has 10 million, million, million suns (10 followed by 18 zeros) similar to our own. One in a million has planets around it. Only one in a million million has the right combination of chemicals, temperature, water, days and nights to support planetary life as we know it. This calculation arrives at the estimated figure of 100 million worlds where life has been forged by evolution."[7]
Seven months after Cocconi and Morrison published their article, Drake made the first systematic search for signals from extraterrestrial intelligent beings. Using the 25 m dish of the National Radio Astronomy Observatory in Green Bank, West Virginia, Drake monitored two nearby Sun-like stars: Epsilon Eridani and Tau Ceti. In this project, which he called Project Ozma, he slowly scanned frequencies close to the 21 cm wavelength for six hours per day from April to July 1960.[6] The project was well designed, inexpensive, and simple by today's standards. It was also unsuccessful.
Soon thereafter, Drake hosted a "search for extraterrestrial intelligence" meeting on detecting their radio signals. The meeting was held at the Green Bank facility in 1961. The equation that bears Drake's name arose out of his preparations for the meeting.[8]
The ten attendees were conference organizer J. Peter Pearman, Frank Drake, Philip Morrison, businessman and radio amateur Dana Atchley, chemist Melvin Calvin, astronomer Su-Shu Huang, neuroscientist John C. Lilly, inventor Barney Oliver, astronomer Carl Sagan and radio-astronomer Otto Struve.[9] These participants dubbed themselves "The Order of the Dolphin" (because of Lilly's work on dolphin communication), and commemorated their first meeting with a plaque at the observatory hall.[10][11]
Equation
The Drake equation is:
where:
- N = the number of civilizations in our galaxy with which communication might be possible (i.e. which are on our current past light cone);
and
- R∗ = the average rate of star formation in our galaxy
- fp = the fraction of those stars that have planets
- ne = the average number of planets that can potentially support life per star that has planets
- fl = the fraction of planets that could support life that actually develop life at some point
- fi = the fraction of planets with life that actually go on to develop intelligent life (civilizations)
- fc = the fraction of civilizations that develop a technology that releases detectable signs of their existence into space
- L = the length of time for which such civilizations release detectable signals into space[12][13]
Usefulness
The Drake equation amounts to a summary of the factors affecting the likelihood that we might detect radio-communication from intelligent extraterrestrial life.[1][12][14] The last four parameters, fl, fi, fc, and L, are not known and are very difficult to estimate, with values ranging over many orders of magnitude (see criticism). Therefore, the usefulness of the Drake equation is not in the solving, but rather in the contemplation of all the various concepts which scientists must incorporate when considering the question of life elsewhere,[1][3] and gives the question of life elsewhere a basis for scientific analysis. The Drake equation is a statement that stimulates intellectual curiosity about the universearound us, for helping us to understand that life as we know it is the end product of a natural, cosmic evolution, and for helping us realize how much we are a part of that universe.[13] What the equation and the search for life has done is focus science on some of the other questions about life in the universe, specifically abiogenesis, the development of multi-cellular life and the development of intelligence itself.[15]
Within the limits of our existing technology, any practical search for distant intelligent life must necessarily be a search for some manifestation of a distant technology. After about 50 years, the Drake equation is still of seminal importance because it is a 'road map' of what we need to learn in order to solve this fundamental existential question.[1] It also formed the backbone of astrobiology as a science; although speculation is entertained to give context, astrobiology concerns itself primarily with hypotheses that fit firmly into existing scientific theories. Some 50 years of SETI have failed to find anything, even though radio telescopes, receiver techniques, and computational abilities have improved enormously since the early 1960s, but it has been discovered, at least, that our galaxy is not teeming with very powerful alien transmitters continuously broadcasting near the 21 cm hydrogen frequency. No one could say this in 1961.[16]
Modifications
As many observers have pointed out, the Drake equation is a very simple model that does not include potentially relevant parameters,[17]and many changes and modifications to the equation have been proposed. One line of modification, for example, attempts to account for the uncertainty inherent in many of the terms.[18]
Others note that the Drake equation ignores many concepts that might be relevant to the odds of contacting other civilizations. For example, David Brin states: "The Drake equation merely speaks of the number of sites at which ETIs spontaneously arise. The equation says nothing directly about the contact cross-section between an ETIS and contemporary human society".[19] Because it is the contact cross-section that is of interest to the SETI community, many additional factors and modifications of the Drake equation have been proposed.
- Colonization
- It has been proposed to generalize the Drake equation to include additional effects of alien civilizations colonizing other star systems. Each original site expands with an expansion velocity v, and establishes additional sites that survive for a lifetime L. The result is a more complex set of 3 equations.[19]
- Reappearance factor
- The Drake equation may furthermore be multiplied by how many times an intelligent civilization may occur on planets where it has happened once. Even if an intelligent civilization reaches the end of its lifetime after, for example, 10,000 years, life may still prevail on the planet for billions of years, permitting the next civilization to evolve. Thus, several civilizations may come and go during the lifespan of one and the same planet. Thus, if nr is the average number of times a new civilization reappears on the same planet where a previous civilization once has appeared and ended, then the total number of civilizations on such a planet would be 1 + nr, which is the actual reappearance factor added to the equation.
- The factor depends on what generally is the cause of civilization extinction. If it is generally by temporary uninhabitability, for example a nuclear winter, then nr may be relatively high. On the other hand, if it is generally by permanent uninhabitability, such as stellar evolution, then nr may be almost zero. In the case of total life extinction, a similar factor may be applicable for fl, that is, how many times life may appear on a planet where it has appeared once.
- METI factor
- Alexander Zaitsev said that to be in a communicative phase and emit dedicated messages are not the same. For example, humans, although being in a communicative phase, are not a communicative civilization; we do not practise such activities as the purposeful and regular transmission of interstellar messages. For this reason, he suggested introducing the METI factor (messaging to extraterrestrial intelligence) to the classical Drake equation.[20] He defined the factor as "the fraction of communicative civilizations with clear and non-paranoid planetary consciousness", or alternatively expressed, the fraction of communicative civilizations that actually engage in deliberate interstellar transmission.
- The METI factor is somewhat misleading since active, purposeful transmission of messages by a civilization is not required for them to receive a broadcast sent by another that is seeking first contact. It is merely required they have capable and compatible receiver systems operational; however, this is a variable humans cannot accurately estimate.
- Biogenic gases
- Astronomer Sara Seager proposed a revised equation that focuses on the search for planets with biosignature gases.[21] These gases are produced by living organisms that can accumulate in a planet atmosphere to levels that can be detected with remote space telescopes.[22]